Differential screening identifies molecules specifically inhibiting CCR5 transport to the cell surface and HIV infection

2018 
Proteins destined to the cell surface are conveyed through membrane-bound compartments using the secretory pathway. Multiple secretory routes exist in cells, which paves the way to the development of inhibitory molecules able to specifically perturb the transport of a chosen cargo. We used differential high-content screening of chemical libraries to identify molecules reducing the secretion of CCR5, the major co-receptor for HIV-1 entry. Three molecules strongly affected the anterograde transport of CCR5, without inhibiting the transport of the related G protein-coupled receptors CCR1 and CXCR4. These three molecules perturb the transport of endogenous CCR5 and decrease the entry of HIV in human primary target cells. Two molecules were found to share the same mode of action, inhibiting palmitoylation of CCR5. Our results demonstrate that secretory routes can be specifically targeted which allows to envisage novel strategies to provoke the intracellular retention or re-routing of secretory proteins involved in disease development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []