Cerebellar Inputs to Intraparietal Cortex Areas LIP and MIP: Functional Frameworks for Adaptive Control of Eye Movements, Reaching, and Arm/Eye/Head Movement Coordination

2010 
Using retrograde transneuronal transfer of rabies virus in combination with a conventional tracer (cholera toxin B), we studied simultaneously direct (thalamocortical) and polysynaptic inputs to the ventral lateral intraparietal area (LIPv) and the medial intraparietal area (MIP) in nonhuman primates. We found that these areas receive major disynaptic inputs from specific portions of the cerebellar nuclei, the ventral dentate (D), and ventrolateral interpositus posterior (IP). Area LIPv receives inputs from oculomotor domains of the caudal D and IP. Area MIP is the target of projections from the ventral D (mainly middle third), and gaze- and arm-related domains of IP involved in reaching and arm/eye/head coordination. We also showed that cerebellar cortical “output channels” to MIP predominantly stem from posterior cerebellar areas (paramedian lobe/Crus II posterior, dorsal paraflocculus) that have the required connectivity for adaptive control of visual and proprioceptive guidance of reaching, arm/eye/head coordination, and prism adaptation. These findings provide important insight about the interplay between the posterior parietal cortex and the cerebellum regarding visuospatial adaptation mechanisms and visual and proprioceptive guidance of movement. They also have potential implications for clinical approaches to optic ataxia and neglect rehabilitation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    116
    References
    133
    Citations
    NaN
    KQI
    []