Structure and properties of novel epoxy resins containing naphthalene units and aliphatic chains

2013 
Two novel epoxy resins; namely, R1 and R2 were synthesized and characterized. These two resins were isomers and both contained naphthalene units and two symmetric flexible aliphatic ester chains terminated by epoxy groups. To investigate the influence of different structural isomers on the performance of these epoxy resins, they were both cured with various curing agents which results in the choosing of 4,4′-diaminodiphenylmethane (DDM) as the optimized curing agent. The curing technical temperature was obtained from extrapolated plots of T–β curve at different heating rates. The kinetic parameters, the activation energy (E a) and the reaction order (n) were deduced by Kissnger’s isoconversional method and Crane equation. The moisture absorption and mechanical and thermal properties of the cured epoxy resins were investigated. Experimental results indicated that the R1/DDM and R2/DDM epoxy resins displayed improved mechanical performance without significant decrease in their important inherent properties, e.g., temperature of glass transition (T g), moisture absorption and thermal properties when compared with the corresponding commercial biphenyl-type epoxy resins. The average inter-segment distances in R1/DDM and R2/DDM systems were 4.46 and 4.88 A, respectively, which were measured by wide-angle X-ray diffraction. The result showed R1/DDM (1,5-di-substituted) was strongly hindered in comparison with R2/DDM (2,7-di-substituted) and E a and T g values of the R1/DDM were slightly higher than those of R2/DDM. Furthermore, mechanical properties and moisture absorption of the R1/DDM were lower than those of R2/DDM. Nevertheless, the position of the substituent only weakly affected the thermal properties and the reaction order (n).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    3
    Citations
    NaN
    KQI
    []