N-Doped Sandwich-Structured Mo2C@C@Pt Interface with Ultralow Pt Loading for pH-Universal Hydrogen Evolution Reaction

2019 
Designing a unique electrochemical interface to exhibit Pt-like activity and good stability is indispensable for the efficient hydrogen evolution reaction (HER). Herein, we synthesize well-defined Mo2C@NC@Pt nanospheres with a sandwich-structured interface through a facile organic–inorganic pyrolysis and following reduction process. The obtained Mo2C@NC@Pt heterostructures with ultralow Pt loading are composed of well-dispersed Mo2C nanoparticles (NPs) inner layer, N-doped carbon layer, and ultrafine Pt NPs outer layer. Electrochemical measurements demonstrate that Mo2C@NC@Pt heterostructures not only exhibit superior HER activities than commercial Pt/C with small overpotentials of only 27, 47, and 25 mV to achieve a current density of 10 mA cm–2 in acidic, alkaline, and neutral media, respectively, but also possess favorable long-term stability in pH-universal solution. The improved reaction kinetics of Mo2C@NC@Pt heterostructures are mainly attributed to the unique sandwich-structured interface with wel...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    40
    Citations
    NaN
    KQI
    []