Dynamic Surface Properties of Mixed Dispersions of Silica Nanoparticles and Lysozyme

2019 
The surface properties of mixed aqueous dispersions of lysozyme and silica nanoparticles were studied using surface-sensitive techniques in order to gain insight into the mechanism of the simultaneous adsorption of protein/nanoparticle complexes and free protein as well as the resulting layer morphologies. The properties were first monitored in situ during adsorption at the air/water interface using dilatational surface rheology, ellipsometry, and Brewster angle microscopy. Two main steps in the evolution of the surface properties were identified. First, the adsorption of complexes did not lead to significant deviations in the dynamic surface elasticity and dynamic surface pressure from those for a layer of adsorbed lysozyme globules. Second, through the gradual displacement of protein globules from the interfacial layer as a result of further complex adsorption, the layer became more dense with much higher dynamic surface elasticity (∼280 mN/m compared to ∼80 mN/m for a pure protein layer). These layers ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []