A Multi-Attribute Decision Method under Uncertainty Environment Conditions—The Green Supplier Evaluation Perspective

2021 
Due to the continuous changes of political environment, consumption habits, technological progress and other factors, the external environment of enterprises is full of uncertainty. The turbulence of external environment is not conducive to the long-term operation and development of enterprises, but also brings great challenges to the selection of suppliers. This makes the competition of enterprises focus on how to choose long-term cooperation suppliers in the uncertain external environment. In addition, due to the deterioration of the global environment, governments pay more and more attention to environmental pollution, and consumers are more and more inclined to green consumption, which makes many companies pay more and more attention to environmental indicators when selecting suppliers. In the case of external environment turbulence and serious environmental pollution, the evaluation and selection of green suppliers in uncertain environment is particularly important for the long-term development of enterprises. What’s more, when the supplier’s capability gap is small, the decision-maker often hesitates among several suppliers. In this paper, the hesitant fuzzy is used to describe the hesitant psychology of decision-makers in selecting suppliers, the variance fluctuation is used to describe the characteristics of hesitant fuzzy numbers, and the probability is used to measure the uncertainty of the environment. A green supplier evaluation model under the uncertainty environment is proposed, which comprehensively evaluates the green suppliers under the uncertain environment. Furthermore, it is compared with other methods that do not consider the uncertainty and the adaptability of evaluation method and right confirmation method, so as to reflect the influence of uncertainty to green supplier evaluation and the importance of adaptability of evaluation method and right confirmation method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []