Polymorphisms of the kappa casein ( CSN 3) gene and inference of its variants in water buffalo ( Bubalus bubalis )
2019
Abstract. Kappa casein plays a crucial role in the formation of stable casein micelles
and has a key influence on milk-clotting properties. However, current
understanding of buffalo CSN3 gene polymorphisms is not sufficient. In this
study, the polymorphisms in the complete coding sequence (CDS) of the buffalo CSN3
were detected using PCR product direct sequencing. The CDS of CSN3 for river and
swamp buffalo was the same in length, which contained an open reading frame
of 573 nucleotides encoding a peptide containing 190 amino acid residues. A
total of eight single nucleotide polymorphisms (SNPs) was identified in two
types of buffalo. Among them, c.86C>T, c.252G>C,
c.445G>A, c.467C>T and c.516A>C were
non-synonymous, which leads to p.Pro8Leu, p.Lys63Asn, p.Val128Ile,
p.Thr135Ile and p.Glu151Asp substitutions in buffalo kappa casein ( κ -CN),
respectively. The substitution of p.Thr135Ile may exert a vital effect on the
function of buffalo κ -CN. Eleven haplotypes were defined based on
the SNPs found in buffalo, and accordingly, seven protein variants and four synonymous variants of buffalo κ -CN were inferred, called variants A,
B, B 1 , C, C 1 , C 2 , D, E, F, F 1 and G. The
variants observed in water buffalo did not exist in the Bos genus. In addition, 14 amino acid differential sites of κ -CN between buffalo and the Bos genus
were identified, of which 3 were located at glycosylation sites (80S, 96T,
141S) and 4 at phosphorylation sites (19S, 80S, 96T, 141S). It is speculated
that they may lead to differences in the physicochemical properties of
κ -CN between buffalo and the Bos genus. This study will lay a foundation
for exploring the association between the variation in the CSN3 gene and the
lactation traits of buffalo.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
32
References
2
Citations
NaN
KQI