Conditionally structured variational Gaussian approximation with importance weights

2019 
We develop flexible methods of deriving variational inference for models with complex latent variable structure. By splitting the variables in these models into "global" parameters and "local" latent variables, we define a class of variational approximations that exploit this partitioning and go beyond Gaussian variational approximation. This approximation is motivated by the fact that in many hierarchical models, there are global variance parameters which determine the scale of local latent variables in their posterior conditional on the global parameters. We also consider parsimonious parametrizations by using conditional independence structure, and improved estimation of the log marginal likelihood and variational density using importance weights. These methods are shown to improve significantly on Gaussian variational approximation methods for a similar computational cost. Application of the methodology is illustrated using generalized linear mixed models and state space models.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    2
    Citations
    NaN
    KQI
    []