Decrease of Intracellular Chloride Concentration Promotes Endothelial Cell Inflammation by Activating Nuclear Factor-κB Pathway

2012 
Recent evidence suggested that ClC-3 channel/antiporter is involved in regulation of nuclear factor (NF)-κB activation. However, the mechanism explaining how ClC-3 modulates NF-κB signaling is not well understood. We hypothesized that ClC-3-dependent alteration of intracellular chloride concentration ([Cl−]i) underlies the effect of ClC-3 on NF-κB activity in endothelial cells. Here, we found that reduction of [Cl−]i increased tumor necrosis factor-α (TNFα)-induced expression of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 and adhesion of monocytes to endothelial cells (P<0.05; n=6). In Cl− reduced solutions, TNFα-evoked IκB kinase complex β and inhibitors of κBα phosphorylation, inhibitors of κBα degradation, and NF-κB nuclear translocation were enhanced. In addition, TNFα and interleukin 1β could activate an outward rectifying Cl− current in human umbilical vein endothelial cells and mouse aortic endothelial cells. Knockdown or genetic deletion of ClC-3 inhibited or abolished ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []