Origin of the metamagnetic transitions in Y1-Er Fe2(H,D)4.2 compounds

2020 
Abstract The structural and magnetic properties of Y1-xErxFe2 intermetallic compounds and their hydrides and deuterides Y1-xErxFe2H(D)4.2 have been investigated using X-ray diffraction and magnetic measurements under static and pulsed magnetic field up to 60 T. The intermetallics crystallize in the C15 cubic structure (Fd-3m space group), whereas corresponding hydrides and deuterides crystallize in a monoclinic structure (Pc space group). All compounds display a linear decrease of the unit cell volume versus Er concentration; the hydrides have a 0.8% larger cell volume compared to the deuterides with same Er content. They are ferrimagnetic at low field and temperature with a compensation point at x = 0.33 for the intermetallics and x = 0.57 for the hydrides and deuterides. A sharp first order ferromagnetic-antiferromagnetic (FM-AFM) transition is observed upon heating at TFM-AFM for both hydrides and deuterides. These compounds show two different types of field induced transitions, which have different physical origin. At low temperature (T
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    1
    Citations
    NaN
    KQI
    []