On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR

2021 
Abstract Oxygen reduction reaction (ORR) is a crucial process that drives the operation of several energy storage devices. ORR can proceed on the neat carbon surface in the absence of a catalyst, and its electrochemical activity is determined by its microstructure and chemical composition. Oxygen functional groups unavoidably existing on the carbon surface can serve as adsorption sites for ORR intermediates; the presence of some oxygen functionalities gives rise to an increase in the density of electronic states (DOS) at the Fermi level (FL). Both factors should have a positive impact on the electron transfer rate that was demonstrated for ORR in aqueous media. To study the O-groups effect on the aprotic ORR, which is now of interest due to the extensive development of aprotic metal-air batteries, we use model oxidized carbon electrodes (HOPG and single-layer graphene). We demonstrate that oxygen functionalities (epoxy, carbonyl, and lactone) do not affect the rate of one-electron oxygen reduction in aprotic media in the absence of metal cations since their introduction practically does not increase DOS at FL. However, in Li+-containing electrolytes, oxygen groups enhance both the rate of second electron transfer and carbon degradation due to its oxidation by LiO2 yielding carbonate species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    0
    Citations
    NaN
    KQI
    []