Entangling three identical particles via spatial overlap

2021 
Quantum correlations between identical particles are at the heart of quantum technologies. Recently, particle identity has drawn strong attention as an essential resource for generating entanglement. Several studies with two identical particles have shown that the spatial overlap and indistinguishability between the particles are necessary for generating bipartite entanglement. On the other hand, researches on the extension to more than two-particle systems are limited by the practical difficulty to deal with multiple identical particles in laboratories. In this work, we propose schemes to generate two fundamental classes of genuine tripartite entanglement, i.e., GHZ and W classes, which are experimentally demonstrated with three identical photons. We also show that the tripartite entanglement class decays from the genuine entanglement to the full separability as the particles become more distinguishable from each other. Our results support the prediction that particle indistinguishability is a fundamental element for entangling identical particles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []