Dielectric-plate-implanted Higher Order Mode (HOM) Waveguide for High Intensity Multi-beam Device Application

2012 
A mode-selective oversized RF-beam channel has been investigated for high intensity multi-beam devices. Implanting the equi-spaced dielectric plates at the transverse positions where longitudinal electric fields of a HOM are minimal in the micro-metallic structure strongly suppresses all lower energy modes and other wakefield modes. The dielectric lattice captures only a single HOM of the wavelengths that correspond to the plate spacing. Electromagnetic simulations have shown that the lower energy modes, TE10 and TE20 modes, are suppressed down to < ~ - 60 dB by two plate loads, while TE310-mode prominently propagates through the 2 mm long waveguide only with – 4 dB (= - 2dB/mm) at 1 THz. The numerical calculation indicated that the TE30 mode has ~ a few times higher Q than the lower energy modes. The strong single mode selectivity has been extensively looked into with a more highly overmoded structure. Feasibility analysis of the HOM structure for multi-beam device application is under investigation. Particle-in-cell (PIC) simulation has shown coherent beam bunching and energy gain from THz driving signal. Multi-beam RF interaction could be an attractive scheme to resolve instability issues in the low energy region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    0
    Citations
    NaN
    KQI
    []