Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low- k Films: A Surface Brillouin Scattering Study

2018 
To reduce the RC (resistance–capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson’s ratio, and Young’s modulus of these porous low-k SiOC:H films (∼ 25–250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    6
    Citations
    NaN
    KQI
    []