Refueling-station costs for metal hydride storage tanks on board hydrogen fuel cell vehicles

2019 
Abstract Refueling costs account for much of the fuel cost for light-duty hydrogen fuel-cell electric vehicles. We estimate cost savings for hydrogen dispensing if metal hydride (MH) storage tanks are used on board instead of 700-bar tanks. We consider a low-temperature, low-enthalpy scenario and a high-temperature, high-enthalpy scenario to bracket the design space. The refueling costs are insensitive to most uncertainties. Uncertainties associated with the cooling duty, coolant pump pressure, heat exchanger (HX) fan, and HX operating time have little effect on cost. The largest sensitivities are to tank pressure and station labor. The cost of a full-service attendant, if the refueling interconnect were to prevent self-service, is the single largest cost uncertainty. MH scenarios achieve $0.71–$0.75/kg-H2 savings by reducing compressor costs without incurring the cryogenics costs associated with cold-storage alternatives. Practical refueling station considerations are likely to affect the choice of the MH and tank design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    11
    Citations
    NaN
    KQI
    []