Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구
2017
본 연구는 토양의 수분 상태를 고해상으로 관측 및 분석하고 농업분야에의 응용 가능성을 평가하기 위한 연구이다. 이를 위하여 Landsat-8 OLI(Operational Land Imager)/TIRS(Thermal Infrared Sensor)의 광학 및 열적외선 위성영상을 연구자료로 전라북도 농업지역을 포함(연구자료 내 46%)하는 2015, 2016, 및 2017년 5-6월에 촬영된 영상 세 장을 이용하였다. 연구지역의 각 영상 촬영일의 토양의 수분 상태는 SPI(Standardized Precipitation Index)3 가뭄지수를 통하여 효과적으로 획득할 수 있으며, 각 영상은 보통, 습윤, 및 건조한 토양 수분 조건을 갖는다. 이러한 각기 다른 토양수분 조건을 갖는 영상을 대상으로 토양의 수분 상태를 관측하고 SPI3 가뭄지수로부터 획득한 토양의 수분 상태와 비교/분석을 수행기 위하여, TVDI(Temperature Vegetation Dryness Index)를 계산하였다. TVDI는 Landsat-8 OLI/TIRS 위성영상으로부터 계산한 LST(Land Surface Temperature) 및 NDVI(Normalized Difference Vegetation Index)의 관계로부터 추정하여 계산된다. LST-NDVI의 형상 공간 내 픽셀의 분포에서 NDVI에 따른 LST의 최대/최소값을 추출하고 이를 대상으로 각각 선형회귀분석(linear regression analysis)을 통하여 NDVI에 따른 LST의 Dry/Wet edge를 결정할 수 있으며, 최종적으로 NDVI에 따른 두 edge 사이에서의 LST 값의 비율을 계산하여 TVDI 값을 계산한다. TVDI 값으로부터 관측된 영상 내 상대적인 토양의 수분 상태를 매우 습윤, 습윤, 보통, 건조, 매우 건조의 5단계로 분류하여 SPI3로부터 획득한 각각의 토양수분 상태와 비교하였다. 연구자료 획득시기인 5-6월 시기의 특성상 모내기로 인하여 영상 내 가장 많은 비율을 차지하는 논 지역의 영향으로 영상 전체 중, 약 62% 이상이 습윤 및 매우 습윤한 상태로 분류되었다. 또한, 보통으로 분류되는 픽셀은 영상 내 밭 지역의 영향 때문으로 분석되었다. 영상 전체에 대해서는 대략적으로 SPI3의 토양수분 상태와 대응하였지만 매우 건조, 습윤, 및 매우 습윤에 해당하는 세분류 결과에서는 SPI3 토양수분 상태와 대응하지 않았다. 또한, 영상에서 논과 밭의 농업지역을 추출 및 분류한 후, SPI3 토양수분 상태와 비교하였을 때, 논 지역의 토양수분 상태 관측 분류 결과는 매우 건조, 보통 및 매우 습윤에서, 밭 지역은 보통의 분류에서만 SPI3 가뭄지수와 대응하지 않았다. 이는 매우 건조한 나지 및 매우 습윤한 모내기로 인한 논 지역, 수계, 구름 및 산지 지형효과 등의 이상치로 인하여 잘못된 Dry/Wet edge 추정의 문제로 사료되어진다. 그러나 5-6월 시기의 농업지역 중, 밭 지역에서는 세분류된 토양의 수분 상태를 효과적으로 관측할 수 있었다. 고해상 광학위성 기반 농업지역에 대한 토양수분 상태의 시·공간적 변화를 관측하여 농업지역의 농업생산량 예측 등 그 응용이 가능할 것으로 사료된다.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
2
Citations
NaN
KQI