Understanding the Topology and the Geometry of the Persistence Diagram Space via Optimal Partial Transport

2019 
Despite the obvious similarities between the metrics used in topological data analysis and those of optimal transport, an optimal-transport based formalism to study persistence diagrams and similar topological descriptors has yet to come. In this article, by considering the space of persistence diagrams as a measure space, and by observing that its metrics can be expressed as solutions of optimal partial transport problems, we introduce a generalization of persistence diagrams, namely Radon measures supported on the upper half plane. Such measures naturally appear in topological data analysis when considering continuous representations of persistence diagrams (e.g.\ persistence surfaces) but also as limits for laws of large numbers on persistence diagrams or as expectations of probability distributions on the persistence diagrams space. We study the topological properties of this new space, which will also hold for the closed subspace of persistence diagrams. New results include a characterization of convergence with respect to transport metrics, the existence of Fr\'echet means for any distribution of diagrams, and an exhaustive description of continuous linear representations of persistence diagrams. We also showcase the usefulness of this framework to study random persistence diagrams by providing several statistical results made meaningful thanks to this new formalism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    20
    Citations
    NaN
    KQI
    []