Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction
2020
Efficient conversion of carbon dioxide (CO2) into value-added products is essential for clean energy research. Design of stable, selective, and powerful electrocatalysts for CO2 reduction reaction (CO2RR) is highly desirable yet largely unmet. In this work, a series of metalloporphyrin-tetrathiafulvalene based covalent organic frameworks (M-TTCOFs) are designed. Tetrathiafulvalene, serving as electron donator or carrier, can construct an oriented electron transmission pathway with metalloporphyrin. Thus-obtained M-TTCOFs can serve as electrocatalysts with high FECO (91.3%, −0.7 V) and possess high cycling stability (>40 h). In addition, after exfoliation, the FECO value of Co-TTCOF nanosheets (~5 nm) is higher than 90% in a wide potential range from −0.6 to −0.9 V and the maximum FECO can reach up to almost 100% (99.7%, −0.8 V). The electrocatalytic CO2RR mechanisms are discussed and revealed by density functional theory calculations. This work paves a new way in exploring porous crystalline materials in electrocatalytic CO2RR. The study of covalent organic frameworks (COFs) in electrocatalytic CO2 reduction reaction (CO2RR) has drawn much attention. Here the authors show a series of tetrathiafulvalene based COFs designed and exfoliated into nanosheets which exhibit high electrocatalytic CO2RR performance.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
100
Citations
NaN
KQI