First-principles study of R3c-MgSnX3 (X O, S and Se) for photovoltaic and ferroelectric application

2022 
Abstract Polarized structure oxides have unique advantages in photovoltaic field with internal electric field, but it is difficult to make full use of them with visible light in general due to their large band gap. The stability and electronic structure properties of a novel R3c polarization structure MgSnX3 (X O, S and Se) have been calculated by first-principles method. The calculated results show that the elastic coefficients and phonon frequencies of R3c-MgSnX3 (X O, S and Se) satisfy the mechanical stability conditions. R3c-MgSnX3 (S and Se) maintains a higher theoretical ferroelectric polarization strength than R3c-MgSnO3, and at the same time reduces the band gap obviously. Spectroscopic Limited Maximum Efficiency calculation also shows that MgSnS3 has high photoelectric conversion efficiency and is a potential ferroelectric photovoltaic material with high efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []