Deciphering the succession dynamics of dominant and rare genera in biofilm development process.

2020 
Abstract Deciphering the succession dynamics of dominant and rare taxa is crucial to understand the stability and ecosystem functions of biofilm communities. However, the essential laws of the succession dynamics based on dominant and rare taxa were still unenlightened. Herein, we investigated the succession dynamics of dominant and rare genera in multi-species biofilms developed in flow cells fed with 10 and 40 mg-TOC/L LB broth. The relative abundance of dominant genera (Enterobacteria and Acinetobacter) decreased remarkably (from 94.63% to 73.22%) in 10 mg-TOC/L LB broth, whereas they kept relatively steady (93.75 ± 4.23%) along with the cultivation time in 40 mg-TOC/L LB broth. Fluorescence in situ hybridization showed that rare genera tended to form clusters at both concentrations, while weaker dispersal of dominant genera caused patchier biofilm structures in 10 mg-TOC/L LB broth compared to that in 40 mg-TOC/L LB broth. Null model analyses further demonstrated that the stochastic ecological drift was more pronounced in the community assembly of biofilms in 10 mg-TOC/L LB broth (73.33%) than those in 40 mg-TOC/L LB broth (60.95%), weakening the competitive superiority of dominant taxa in the patchier biofilms. In addition, the co-occurrence network reflected that the positive interactions among rare genera contributed to exclude dominant genera in 10 mg-TOC/L LB broth, whereas negative interactions only occurred between the dominant Enterobacter and Acinetobacter or rare Comamonas in 40 mg-TOC/L LB broth. This study highlighted the distinctive succession dynamics of dominant and rare genera in biofilms at different substrate concentrations, which would advance our understanding of the biofilm communities in biofilm-related process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    3
    Citations
    NaN
    KQI
    []