Large-Volume Samplers for Efficient Composite Sampling and Particle Characterization in Sewer Systems

2021 
The assessment of pollution from sewer discharges requires flexible and reliable sampling methods. The characteristics of the sampling system must be known to allow comparison with other studies. Large volume samplers (LVS) are increasingly used for monitoring in sewer systems and surface waters. This article provides a comprehensive description of this widely applicable sampling system, gives insight into its comparability to standard methods, and provides recommendations for researchers and practitioners involved in water quality monitoring and urban water management. Two methods for subsampling from LVS are presented, i.e., collection of homogenized or sedimented samples. Results from a sampling campaign at combined sewer overflows (CSOs) were used to investigate the comparability of both subsampling methods and conventional autosamplers (AS). Event mean concentrations (EMC) of total suspended solids (TSS) derived from homogenized LVS samples and AS pollutographs were comparable. TSS-EMC of homogenized and sedimented LVS samples were also comparable. However, differences were found for particle size distribution and organic matter content. Consequently, sedimented LVS samples, which contained solids masses in the range of 3–70 g, are recommended to be used for particle characterization. The differences between homogenized and sedimented LVS samples, e.g., the quality of homogenization and the stability of samples during sedimentation in LVS, should be further investigated. Based on LVS results, average TSS concentrations of 50–60 mg/L were found for CSOs from centralized treatment facilities in Bavaria. With a median share of 84%, particles <63 µm were the dominant fraction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    0
    Citations
    NaN
    KQI
    []