Gasotransmitter H2S accelerates seed germination via activating AOX mediated cyanide-resistant respiration pathway

2021 
Hydrogen sulfide (H2S) has been witnessed as a crucial gasotransmitter involving in various physiological processes in plants. H2S signaling has been reported to involve in regulating seed germination, but the underlying mechanism remains poorly understood. Here, we found that endogenous H2S production was activated in germinating Arabidopsis seeds, correlating with upregulated both the transcription and the activity of enzymes (LCD and DES1) responsible for H2S production. Moreover, NaHS (the H2S donor) fumigation significantly accelerated seed germination, while H2S-generation defective (lcd/des1) seeds exhibited decreased germination speed. Further results indicated that the alternative oxidase (AOX), a cyanide-insensitive terminal oxidase, can be stimulated by imbibition, and the expression of AOX genes was provoked lag behind H2S production during germination. Additionally, exogenous H2S fumigation significantly reinforced imbibition induced enhancement of AOX1A expression, and mediated post-translational modification to keep AOX in its reduced and active state, which mainly involved H2S induced increase of the GSH/GSSG ratio and the cell reducing power. Consequently, H2S signaling acts as a trigger to induce AOX mediated cyanide-resistant respiration to accelerate seed germination. Our study correlates H2S signaling to cyanide metabolism, which also participates in endogenous H2S generation, providing evidence for more extensive studies of H2S signaling. HighlightGasotransmitter H2S provokes AOX mediated cyanide-resistant respiration, mainly through both long-term (up-regulating AOX1A expression) and short-term (inducing post-translational activation of AOX) regulatory modes, to accelerate seed germination.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []