Systematic investigation of pipe flows and installation effects using laser Doppler anemometry—Part II. The effect of disturbed flow profiles on turbine gas meters—a describing empirical model

1996 
Abstract For systematic investigations of installation effects and for finding efficient ways to minimise these effects, a research project was initiated at the PTB. It covers the design of an automated test facility using a laser Doppler anemometer, the measurement of velocity profiles downstream of several pipe configurations and flow conditioners, as well as the measurement of the change in the gas meter behaviour, namely the shift of the error curve due to the disturbed velocity profiles. Part I of this paper (presented in this issue) describes the test facility for the investigation of installation effects and shows the relation between pipe configuration and disturbed flow profile for a wide variety of pipe configurations and flow conditioners. The second part compares the error shift of turbine meters with the characteristic of disturbed flow profiles. For this, three flow field parameters are used to quantify the disturbances of the velocity profiles such as the swirl intensity, flatness and asymmetry of the profile. Considering this, an empirical model is presented to explain the error shift of a turbine meter as a function of these three flow field parameters. The model will be verified for three types of turbine meters and the results will be discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    20
    Citations
    NaN
    KQI
    []