Time-resolved photodissociation of oxygen at 162 nm

2011 
Oxygen was excited by 10 fs pulses in the Schumann–Runge continuum at 162 nm, which is by 0.57 eV above the dissociation limit. It was probed by high-intensity ionization at 810 nm with 1014 W cm−2, measuring the ion yields. The O2+ signal decays in 4.3 fs, which is much shorter than the expected time for dissociation. It is ascribed to a rapid decay of the ionization probability. In a similar time, the ion in the second excited state (with excess energy taken over from the neutral) reaches the dissociation limit, whereas this time would be much longer from the two lower ion states. In fact, the O+ signal rises to a (first) maximum at 6 fs. The preference for the higher ion state is rationalized by an intermediate resonance in the neutral molecule for which the polarization dependence also provides evidence. But the shape of the O+ signal is very odd: it exhibits three maxima (at 6, 29 and 53 fs) of increasing intensity, before decaying rapidly (≤3.5 fs) to a pedestal. In contrast to the first maximum, the others appear at times when there is practically no interatomic force left in the excited state. We postulate a highly repulsive doubly excited state as a resonance for interpreting the second maximum, and for the third an ion-pair state lying further outside. Comparison is made with enhanced ionization, which has often been found at large interatomic distances on multiple ionization in strong laser fields. Consistent with this mechanism is the absence of similar observations at negative delay times, where five fundamental photons act as a pump and the fifth harmonic as a probe.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    5
    Citations
    NaN
    KQI
    []