Hydrogen and surface excitation in electron spectra of polyethylene

2004 
Abstract The inelastic mean free path (IMFP) of electrons of polyethylene was determined by elastic peak electron spectroscopy (EPES). Hydrogen cannot be detected directly by conventional electron spectroscopies, such as Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), reflection electron energy loss spectroscopy (REELS) and EPES. The evaluation of electron spectra on polyethylene (PE) and other polymers needs corrections for hydrogen and surface excitation. Electron elastic backscattering on H atoms appears in the splitting of the elastic peak, shifting and Doppler broadening of the H peak produced by recoil effect. This shift is 0.34–3.8 eV for E =0.2–2.0 keV. Experiments resulted in separating the very low H elastic signal from the background. Surface excitation is characterised by the parameter P se ( E ) which was described by formulae of Tanuma, Werner and Chen, using different definitions. The P se ( E ) of PE was determined by our new procedure. Si and Ag were used as reference samples for its determination by EPES experiments. Experiments were made with a HSA spectrometer of high energy resolution. Their Monte Carlo evaluation was based on the NIST 64 database and IMFP of Tanuma et al., Gries and Cumpson. P se ( E ) of PE was determined by best fit of experimental parameters, comparing the different IMFPs and surface excitation correction factors of Chen and Werner et al. The criteria of best fit are the RMS deviations from the different corrections. The total backscattering spectra (elastic and inelastic) of PE, C and Cu resulted in indirect observation of H.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    27
    Citations
    NaN
    KQI
    []