Immunocytochemical analysis of GABA-positive and calretinin-positive horizontal cells in the tiger salamander retina.

2006 
By using immunocytochemical techniques, we demonstrate that there are two distinct, nonoverlapping populations of horizontal cells (HCs) in the tiger salamander retina: GABA-positive cells account for about 72% and GABA-negative (calretinin-positive) cells account for 28% of the total HC somas. The calretinin-positive HCs have relatively sparse and thick dendrites: soma diameter of 19.72 ± 0.29 μm, and soma density of 140 ± 13 cells/mm2, morphological features very much like the A-type HCs described in the accompanying article. The GABA-positive HCs have thinner dendritic and coarse axon-terminal-like processes of higher density: soma diameter of 18 ± 0.18 μm, and soma density of 364 ± 18 cells/mm2, features that very much resemble the B-type HCs and B-type HC axon terminals in the accompanying article. By using double and triple immunostaining techniques we found that only 18% of the non-GABAergic HC dendritic clusters contact rods, whereas the remaining 82% of the dendritic clusters contact cones. This is consistent with the physiological finding in the accompanying article that the A-type HCs are cone-dominated. On the other hand, 32% of GABAergic HC dendrites contact rod pedicles and 68% contact cone pedicles, consistent with the physiological finding that B-type HCs and B-type HC axon terminals receive mixed rod/cone inputs. Detailed confocal microscope analysis shows that 4% rods, 6% principal double cones/single cones, and 100% accessory double cones contact calretinin-positive HCs, and 79% rods, 100% principal double cones, 14% accessory double cones, and 82% single cones contact GABAergic HCs. These results suggest that GABAergic and non-GABAergic HC input/output synapses differ and they may mediate different functional pathways in the outer retina. J. Comp. Neurol. 499:432–441, 2006. © 2006 Wiley-Liss, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    27
    Citations
    NaN
    KQI
    []