Energy Level Alignment of Molybdenum Oxide on Colloidal Lead Sulfide (PbS) Thin Films for Optoelectronic Devices

2018 
Interfacial charge transport in optoelectronic devices is dependent on energetic alignment that occurs via a number of physical and chemical mechanisms. Herein, we directly connect device performance with measured thickness-dependent energy-level offsets and interfacial chemistry of 1,2-ethanedithiol-treated lead sulfide (PbS) quantum dots and molybdenum oxide. We show that interfacial energetic alignment results from partial charge transfer, quantified via the chemical ratios of Mo5+ relative to Mo6+. The combined effect mitigates leakage current in both the dark and the light, relative to a metal contact, with an overall improvement in open circuit voltage, fill factor, and short circuit current.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []