Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach part A: Impact study

2018 
Abstract This paper introduces a shell based finite element (FE) model for predicting the impact response and dominant failure mechanisms of fiber reinforced polymer matrix composites subject to low-velocity impact. The model utilizes Enhanced Schapery Theory (EST) for capturing the matrix non-linearity due to micro cracking as well as macroscopic intra-lamina failure, that is, matrix cracking and fiber rupture in the 1–2 failure plane of a lamina. Discrete cohesive elements (DCZM) are utilized for capturing the inter-lamina failure initiation and propagation. The intra- and inter-lamina damage and failure models are implemented as user subroutines in the commercial finite element solver, ABAQUS Explicit. The model is compared against low-velocity impact experimental data. High fidelity non-destructive inspection (NDI) methods are used to quantify the impact damage for a detailed comparison to the model predictions. The modeling technique shows excellent agreement with experimental results, both for impact response and damage evolution.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    24
    Citations
    NaN
    KQI
    []