Generation of Action Recognition Training Data Through Rotoscoping and Augmentation of Synthetic Animations.
2019
In this paper, we present a method to synthetically generate the training material needed by machine learning algorithms to perform human action recognition from 2D videos. As a baseline pipeline, we consider a 2D video stream passing through a skeleton extractor (OpenPose), whose 2D joint coordinates are analyzed by a random forest. Such a pipeline is trained and tested using real live videos. As an alternative approach, we propose to train the random forest using automatically generated 3D synthetic videos. For each action, given a single reference live video, we edit a 3D animation (in Blender) using the rotoscoping technique. This prior animation is then used to produce a full training set of synthetic videos via perturbation of the original animation curves. Our tests, performed on live videos, show that our alternative pipeline leads to comparable accuracy, with the advantage of drastically reducing both the human effort and the computing power needed to produce the live training material.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
19
References
2
Citations
NaN
KQI