Structural Response of Compression-Loaded, Tow-Placed, Variable Stiffness Panels

2002 
Results of an analytical and experimental study to characterize the structural response of two compression-loaded variable stiffness composite panels are presented and discussed. These variable stiffness panels are advanced composite structures, in which tows are laid down along precise curvilinear paths within each ply and the fiber orientation angle varies continuously throughout each ply. The panels are manufactured from AS4/977-3 graphite-epoxy pre-preg material using an advanced tow placement system. Both variable stiffness panels have the same layup, but one panel has overlapping tow bands and the other panel has a constant-thickness laminate. A baseline cross-ply panel is also analyzed and tested for comparative purposes. Tests performed on the variable stiffness panels show a linear prebuckling load-deflection response, followed by a nonlinear response to failure at loads between 4 and 53 percent greater than the baseline panel failure load. The structural response of the variable stiffness panels is also evaluated using finite element analyses. Nonlinear analyses of the variable stiffness panels are performed which include mechanical and thermal prestresses. Results from analyses that include thermal prestress conditions correlate well with measured variable stiffness panel results. The predicted response of the baseline panel also correlates well with measured results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    48
    Citations
    NaN
    KQI
    []