Optically tunable ultra-fast resistive switching in lead-free methyl-ammonium bismuth iodide perovskite film

2021 
Resistive RAMs (Re-RAMs) have come to the fore as a rising star among the next generation non-volatile memories with fast operational speed, excellent endurance and prolonged data retention capabilities. Re-RAMs are being profusely used as storage and processing modules in neuromorphic hardware and high frequency switches in radio-frequency (RF) circuits. Owing to its intrinsic hysteresis and abundance of charge migration pathways, lead halide perovskites have emerged as a promising switching media in Re-RAMs besides its ubiquitous usage in optoelectronic devices. Here, we adopted a lead-free eco-friendly methyl-ammonium bismuth iodide (MA3Bi2I9) perovskite (prepared by solvent-free engineering) as the switching medium sandwiched between copper (Cu) and indium doped tin oxide (ITO) electrodes. The devices exhibited 10^4 high ON/OFF ratio that provided a large window for the multi-bit data storage in a single cell with good accuracy. Robust endurance of 1,730 cycles and good data retention ability of > 3×10^5 s were also observed. Careful switching speed measurements showed the devices can operate with ultra-fast speed of 10 ns for writing and erasing respectively. The devices responded to light illumination and the prolonged retention of the opto-electrically tuned resistance states paved the way for image memorization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    0
    Citations
    NaN
    KQI
    []