Organic-inorganic hybrid tetrachlorocadmates as promising fluorescent agents for cross-linked polyurethanes: synthesis, crystal structures and extended performance analysis

2021 
The aim of this work is to apply organic–inorganic hybrid salts made of imidazo[1,5-a]pyridinium-based cations and halometallate anions as fluorescent agents to modify cross-linked polyurethane (CPU) for the creation of flexible photoluminescent films. The use of ionic compounds ensures excellent dispersion of the luminescent components in the polymer matrix and prevents solid-state quenching. The absence of phase segregation makes it possible to fabricate uniformly luminescent films with a large area. To this, new tetrachlorocadmate salts [L]2[CdCl4] (1) and [L′]2[CdCl4] (2), where L+ is 2-methyl-3-(pyridin-2-yl)imidazo[1,5-a]pyridinium and [L′]+ is 2-methylimidazo[1,5-a]pyridinium cations, have been prepared and characterized by IR, NMR, UV-Vis spectroscopy and single crystal X-ray diffraction. The organic cations resulted from the oxidative cyclization-condensation involving CH3NH2·HCl and 2-pyridinecarbaldehyde in methanol (1), and formaldehyde, CH3NH2·HCl and 2-pyridinecarbaldehyde in an aqueous media (2). In the crystal of 1, loosely packed tetrahedral cations and π–π stacked anions are arranged in separate columns parallel to the a-axis. The pseudo-layered structure of 2 is built of the organic and inorganic layers alternating along the a axis. The adjacent CdCl42− anions in the inorganic layer show no connectivity. The organic–inorganic hybrids 1 and 2 were immobilized in situ in the cross-linked polyurethane in low content (1 wt%). The photoluminescent properties of 1 and 2 in the solid state and in the polymer films were investigated. The semi-transparent CPU films, that remain stable for months, retain the photoluminescent ability of both hybrids in the blue region with a prominent red shift in their emission.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    4
    Citations
    NaN
    KQI
    []