Radiation-induced grafting of acrylic acid onto polyethylene filaments

1981 
Abstract Radiation-induced grafting of acrylic acid onto high density polyethylene (PE) filaments was carried out in order to raise softening temperature and impart flame retardance and hydrophilic properties. Mutual γ-irradiation method was employed for the grafting in a mixture of acrylic acid (AA), ethylene dichloride and water containing a small amount of ferrous ammonium sulfate. The rate of grafting was very low at room temperature. On the other hand, large percent grafts were obtained when the grafting was performed at an elevated temperature. Activation energy for the initial rate of grafting was found to be 17 kcal mol between 20 and 60°C and 10 kcal mol between 60 and 80°C. Original PE filament begins to shrink at 70°C, show maximum shrinkage of 50% at 130°C and then breaks off at 136°C. When a 34% AA graft is converted to metallic salt such as sodium and calcium, the graft filament retains its filament form even above 300°C and gives maximum shrinkage of 15%. Burning tests by a wire-netting basket method indicate that graft filaments and its metallic salts do not form melting drops upon burning and are self-extinguishing. Original PE filament shows no moisture absorption, however, that of AA-grafted PE increases with increasing graft percent. The sodium salt of 15% graft shows the same level of moisture regain as cotton. The AA-grafted PE filament and its metallic salts can be dyed with cationic dyes even at 1% graft. Tensile properties of PE filament is impaired neither by grafting nor by conversion to metallic salts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []