NMDA-induced glutamate and aspartate release from rat cortical pyramidal neurones: evidence for modulation by a 5-HT1A antagonist.

1995 
1 We have investigated an aspect of the regulation of cortical pyramidal neurone activity. Microdialysis was used to assess whether topical application of drugs (in 10 μl) to fill a burr hole over the frontal cortex, where part of the corticostriatal pathway originates, would change concentrations of the excitatory amino acids glutamate and aspartate in the striatum of the anaesthetized rat. 2 Topical application of N-methyl-D-aspartate (NMDA, 2 and 20 mM) dose-dependently increased glutamate and aspartate concentrations in the striatum. Coapplication of tetrodotoxin (10 μm) blocked the NMDA-evoked rise in these amino acids. A calcium-free medium, perfused through the probe also blocked the rise, indicating that it was due to an exocytotic mechanism in the striatum. 3 It was hypothesized that the rise observed was due to an increase in the activity of the corticostriatal pathway. As 5-hydroxytryptamine1A (5-HT1a) receptors are enriched on cell bodies of corticostriatal neurones, a selective 5-HT1A-antagonist (WAY 100135) was coapplied with the lower dose of NMDA. Compared to NMDA alone, coapplication of 50 μm WAY 100135 significantly increased glutamate release. This effect was sensitive to tetrodotoxin and calcium-dependent. Application of 50 μm WAY 100135 alone significantly enhanced glutamate release above baseline; this was also tested at 100 μm (not significant). 4 Compared to NMDA alone, coapplication of WAY 100135 (20 μm) significantly enhanced aspartate release; the mean value was also increased (not significantly) with 50 μm. This rise was calcium-dependent, but not tetrodotoxin-sensitive. WAY 100135 (100 μm) reduced NMDA-induced aspartate release. Application of the drug alone had no effect on basal aspartate release. 5 Coapplication of the 5-HT1A agonist, 8-OHDPAT (5 mM) with NMDA did not affect the NMDA-evoked increase in glutamate and aspartate. 6 Topical application of high potassium (100 mM) to the surface of the cortex did not result in a detectable rise in striatal glutamate or aspartate. 7 Perfusion of WAY 100135 (tested at 50 μm) through the dialysis probe did not affect glutamate or aspartate concentrations. 8 It was concluded that a selective 5-HT1A-antagonist can increase the activity of corticostriatal pyramidal neurones. As in Alzheimer's disease hypoactivity of pyramidal neurones almost certainly exists, a selective 5-HT1A-antagonist may be potentially useful in the treatment of the cognitive symptoms of this disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    68
    Citations
    NaN
    KQI
    []