GRB 111209A/SN 2011kl: Collapse of a Supramassive Magnetar with r-mode Oscillation and Fallback Accretion onto a Newborn Black Hole
2020
Ultra-long-duration gamma-ray burst GRB 111209A was found to be associated with a very luminous supernovae (SNe) SN 2011kl. The physics of GRB 111209A/SN 2011kl has been extensively studied in the literature, but such research has not yet settled down. By investigating in detail the characteristics of the X-ray light curve of GRB 111209A, coupled with the temporal and spectral features observed in SN 2011kl, we argue that a short-lived supramassive magnetar could be responsible for the initial shallow X-ray emission. Then the electromagnetic extraction of spin energy from a black hole (BH) results in the steeply declining X-ray flux when the magnetar collapses into a BH. A fraction of the envelope materials falls back and activates the accretion onto the newborn BH, which produces the X-ray rebrightening bump at late times. During this process, a centrifugally driven baryon-rich quasi-isotropic Blandford & Payne outflow from the revived accretion disk deposits its kinetic energy on the SN ejecta, which powers luminous SN 2011kl. Finally, we place a limitation on the magnetar’s physical parameters based on the observations.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
137
References
1
Citations
NaN
KQI