Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress.

2020 
Salinity is a major limiting factor in crop production. Exogenous spermidine (spd) effectively ameliorates salt injury, though the underlying molecular mechanism is poorly understood. We have used a suppression subtractive hybridization method to construct a cDNA library that has identified up-regulated genes from rice root under the treatment of spd and salt. Total 175 high-quality ESTs of about 100-500 bp in length with an average size of 200 bp are isolated, clustered and assembled into a collection of 62 unigenes. Gene ontology analysis using the KEGG pathway annotation database has classified the unigenes into 5 main functional categories and 13 subcategories. The transcripts abundance has been validated using Real-Time PCR. We have observed seven different types of post-translational modifications in the DEPs. 44 transmembrane helixes are predicted in 6 DEPs. This above information can be used as first-hand data for dissecting the administrative role of spd during salinity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    0
    Citations
    NaN
    KQI
    []