A queueing model for a nonreliable multiterminal system with polling scheduling

1998 
This paper deals with a nonhomogeneous finite-source queueing model to describe the performance of a multiterminal system subject to random breakdowns under the polling service discipline. The model studied here is a closed queueing network which has three service stations. a CPU (single server), terminals (infinite server), a repairman (single server), and a finite number of customers (jobs) that have distinct service rates at the service stations. The CPU's repair has preemptive priority over the terminal repairs, and failure of the CPU stops the service of the other stations, thus the nodes are not independent. It can be viewed as a continuation of papers by the authors (see references), which discussed a FIFO (first-in, first-out) and a PPS (priority processor sharing) serviced queueing model subject to random breakdowns. All random variables are assumed to be independent and exponentially distributed. The system behavior can be described by a Markov chain, but the number of states is very large. The purpose of this paper is to give a recursive computational approach to solve steady-state equations and to illustrate the problem in question using some numerical results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    4
    Citations
    NaN
    KQI
    []