Charging dynamics of dopants in helium nanoplasmas

2016 
We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared (NIR) laser pulses (<10^15 Wcm-2). In particular, we elucidate the interplay of dopant ionization inducing the ignition of a helium nanoplasma, and the charging of the dopant atoms driven by the ionized helium host. Most efficient nanoplasma ignition and charging is found when doping helium droplets with xenon atoms, in which case high charge states both of helium (He2+) and of xenon (Xe^21+) are detected. In contrast, only low charge states of helium and dopants are measured when doping with potassium and calcium atoms. Classical molecular dynamics simulations which include focal averaging generally reproduce the experimental results and provide detailed insights into the correlated charging dynamics of guest and host clusters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []