The influence of light and water mass on bacterial population dynamics in the Amundsen Sea Polynya

2015 
Despite being perpetually cold, seasonally ice-covered and dark, the coastal Southern Ocean is highly productive and harbors a diverse microbiota. During the austral summer, ice-free coastal patches (or polynyas) form, exposing pelagic organisms to sunlight, triggering intense phytoplankton blooms. This strong seasonality is likely to influence bacterioplankton community composition (BCC). For the most part, we do not fully understand the environmental drivers controlling high-latitude BCC and the biogeochemical cycles they mediate. In this study, the Amundsen Sea Polynya was used as a model system to investigate important environmental factors that shape the coastal Southern Ocean microbiota. Population dynamics in terms of occurrence and activity of abundant taxa was studied in both environmental samples and microcosm experiments by using 454 pyrosequencing of 16S rRNA genes. We found that the BCC in the photic epipelagic zone had low richness, with dominant bacterial populations being related to taxa known to benefit from high organic carbon and nutrient loads (copiotrophs). In contrast, the BCC in deeper mesopelagic water masses had higher richness, featuring taxa known to benefit from low organic carbon and nutrient loads (oligotrophs). Incubation experiments indicated that direct impacts of light and competition for organic nutrients are two important factors shaping BCC in the Amundsen Sea Polynya.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    7
    Citations
    NaN
    KQI
    []