A concurrent reliability optimization procedure in the earlier design phases of complex engineering systems under epistemic uncertainties

2016 
Concurrent engineering has obtained increasing attention to solve the design problems of multidisciplinary systems. In practical engineering, there are epistemic uncertainties during whole design cycle of complex systems. Especially in earlier design phases, the effects of epistemic uncertainties are not usually easy to be quantified. It is because design information is insufficient. Furthermore, commonly used probability theory is also not suitable to be utilized. In this situation, epistemic uncertainties will be introduced unavoidably by mathematical models or simulation tools and may affect the performance of complex system significantly. To solve this problem, evidence theory is introduced and combined with the collaborative optimization method in this study. An evidence-based collaborative reliability optimization method is also proposed. Evidence theory is a powerful approach to handle epistemic uncertainties by Plausibility and Belief. Meanwhile, collaborative optimization is widely utilized in th...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    22
    Citations
    NaN
    KQI
    []