language-icon Old Web
English
Sign In

CENTROID TRIANGULATIONS FROM k-SETS

2011 
Given a set V of n points in the plane, no three of them being collinear, a convex inclusion chain of V is an ordering of the points of V such that no point belongs to the convex hull of the points preceding it in the ordering. We call k-set of the convex inclusion chain, every k-set of an initial subsequence of at least k points of the ordering. We show that the number of such k-sets (without multiplicity) is an invariant of V, that is, it does not depend on the choice of the convex inclusion chain. Moreover, this number is equal to the number of regions of the order-k Voronoi diagram of V (when no four points are cocircular). The dual of the order-k Voronoi diagram belongs to the set of so-called centroid triangulations that have been originally introduced to generate bivariate simplex spline spaces. We show that the centroids of the k-sets of a convex inclusion chain are the vertices of such a centroid triangulation. This leads to the currently most efficient algorithm to construct particular centroid triangulations of any given point set; it runs in O(n log n + k(n - k) log k) worst case time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    9
    Citations
    NaN
    KQI
    []