The effect of ultrasmall grain sizes on the thermal conductivity of nanocrystalline silicon thin films

2021 
Nanocrystallization has been an important approach for reducing thermal conductivity in thermoelectric materials due to limits on phonon mean-free path imposed by the characteristic structural size. We report on thermal conductivity as low as 0.3 Wm−1K−1 of nanocrystalline silicon thin films prepared by plasma-enhanced chemical-vapor deposition as grain size is reduced to 2.8 nm by controlling hydrogen dilution of silane gas during growth. A multilayered film composed by alternating growth conditions, with layer thicknesses of 3.6 nm, is measured to have a thermal conductivity 30% and 15% lower than its two constituents. Our quantitative analysis attributes the strong reduction of thermal conductivity with decreasing grain size to the magnifying effect of porosity which occurs concomitantly due to increased mass density fluctuations. Our results demonstrate that ultrasmall grain sizes, multilayering, and porosity, all at a similar nanometer-size scale, may be a promising way to engineer thermoelectric materials. Thermoelectric materials convert heat into electricity and their performance is determined by their figure of merit ZT, which is generally too small in many materials for practical applications. Here, the authors demonstrate that a reduction in grain size for nanocrystalline Si can reduce thermal conductivity and potentially be used as a method to engineer greater ZT in Si for thermoelectric applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []