Detecting Urban Landscape Factors Controlling Seasonal Land Surface Temperatures: From the Perspective of Urban Function Zones

2021 
Understanding the impact on the thermal effect by urbanization is of great significance for urban thermal regulation and is essential for determining the relationship between the urban heat island (UHI) effect and the complexities of urban function and landscape structure. For this purpose, we conducted case research in the metropolitan region of Beijing, China, and nearly 5000 urban blocks assigned different urban function zones (UFZs) were identified as the basic spatial analysis units. The seasonal land surface temperature (LST) retrieved from remote sensing data was used to represent the UHI characteristics of the study area, and the surface biophysical parameters, building forms, and filtered landscape pattern metrics were selected as the urban landscape factors. Then, the effects of urban function and landscape structure on the UHI effect were examined based on the optimal results of the ordinary least squares and geographically weighted regression models. The results indicated that (1) Significant spatiotemporal heterogeneity of the LST was found in the study area, and there was an obvious temperature gradient with "working-living-resting" UFZs. (2) All types of urban landscape factors showed a significant contribution to the seasonal LST, in the order of surface biophysical factors > building forms > landscape factors; however, their contributions varied in different seasons. (3) The major contributing factors showed a certain difference due to the variation of urban function and landscape complexity. This study expands the understanding on the complex relationship among urban landscape, function, and thermal environment, which could benefit urban landscape planning for UHI alleviation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    2
    Citations
    NaN
    KQI
    []