Role of HemF and HemN in the heme biosynthesis of Vibrio vulnificus under S‐adenosylmethionine‐limiting conditions

2015 
Summary Vibrio vulnificus contains two coproporphyrinogen III oxidases (CPOs): O2-dependent HemF and O2-independent HemN. The growth of the hemF mutant HF1 was similar to wild-type cells at pH 7.5 under 2% O2 conditions where HemN was active and had a half-life of 64 min. However, HF1 did not grow when the medium pH decreased to pH 5.0, where oxidative stress affects endogenous S-adenosylmethionine (SAM) levels. The growth of HF1 was restored not only by elevating the expression of MnSOD but also through the exogenous addition of SAM. For HF1 to grow under these SAM-limiting conditions, a mutation arose in hemN, encoding HemNY74F. Refolding of the denatured enzymes in vitro revealed that the apparent binding affinity of HemNY74F for the cofactor SAM1, which coordinates the 4Fe-4S cluster, was approximately sixfold higher than that of HemN. The Km of HemNY74F for the co-substrate SAM2, which provides radicals for CPO reactions, was threefold lower than that of HemN. Thus, affinities for both SAM1 and SAM2 were higher with the Y74F mutation. Taken together, when SAM is limiting, HemN is apparently nonfunctional, and heme synthesis is continued by HemF.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    5
    Citations
    NaN
    KQI
    []