A multistage rotational speed changing molecular rotor regulated by pH and metal cations

2018 
Despite having significant applications in building nanomachines, molecular rotors with the rotational speed modulations to multiple stages in a wide range of frequency have not yet been well established. Here, we report the discovery of a stimuli-responsive molecular rotor, the rotational speed of which in the slow-to-fast range could be modulated to at least four stages triggered by acid/base and metal cations. The rotor itself rotates rapidly at ambient or elevated temperature but displays a restricted rotation after deprotonation due to the produced intramolecular electrostatic repulsion. Subsequent addition of Li+ or Na+ cations introduces an electrostatic bridge to stabilize the transition state of the deprotonated rotor, thus giving a cation-radius-dependent acceleration of the rotation to render the rotor running at a mid-speed. All the stimuli are highly reversible. Our studies provide a conceptual approach for constructing multistage rotational-speed-changing molecular rotors, and further, the practical nanomachines.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    22
    Citations
    NaN
    KQI
    []