Effects of activation on the elastic properties of intact soleus muscles with a deletion in titin

2016 
Titin has long been known to contribute to muscle passive tension. Recently, it was also demonstrated that titin-based stiffness increases upon Ca 2+ -activation of wildtype mouse psoas myofibrils stretched beyond overlap of the thick and thin filaments. In addition, this increase in titin-based stiffness upon activation was impaired in single psoas myofibrils from mdm mice with a deletion in titin. Here, we investigate the effects of muscle activation on elastic properties of intact soleus muscles from wildtype and mdm mice to determine whether titin may contribute to active muscle stiffness. Using load-clamp experiments, we compared the stress-strain relationships of elastic elements in active and passive muscles during unloading, and quantified the change in stiffness upon activation. We used the mdm mutation, characterized by a deletion in the N2A region of the Ttn gene, to test the hypothesis that titin contributes to active muscle stiffness. Results show that the elastic modulus of wildtype muscles increases upon activation. Elastic elements began to develop force at lengths that were 15% shorter in active than in passive soleus, and there was a 2.9-fold increase in the slope of the stress - strain relationship. In contrast, mdm soleus showed no effect of activation on the slope or intercept of the stress - strain relationship. These results from intact soleus muscles are qualitatively and quantitatively similar to results from single wildtype psoas myofibrils stretched beyond overlap of the thick and thin filaments. Therefore, it is likely that titin plays a role in the increase of stiffness during rapid unloading that we observed in intact soleus muscles upon activation. The results from intact mdm soleus muscles are also consistent with impaired titin activation observed in single mdm psoas myofibrils stretched beyond filament overlap, further suggesting that the mechanism of titin activation is impaired in skeletal muscles from mdm mice. These results are consistent with the idea that, in addition to the thin filaments, titin is activated upon Ca 2+ -influx in skeletal muscle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    26
    Citations
    NaN
    KQI
    []