Toxicity of sulfide-modified nanoscale zero-valent iron to Escherichia coli in aqueous solutions

2019 
Abstract Sulfide-modified nanoscale zero-valent iron (S/nZVI) has been widely studied for groundwater remediation, but the potential environmental risks are poorly understood. This study examined the toxicity of S/nZVI to Escherichia coli in aqueous solutions. The sulfidation could reduce toxicity of nZVI, and S/nZVI exhibited a weaker toxicity at lower Fe/S molar ratio, resulting from the lower Fe 0 content and higher sulfate and iron oxide. The toxicity of S/nZVI was significantly alleviated in the presence of N-Acetyl-L-cysteine (a scavenger for reactive oxygen species (ROS)), revealing that the ROS-induced oxidative stress was the principal mechanism. Moreover, Transmission Electron Microscopy images elucidated that the membranes of S/nZVI-treated cells were disrupted and S/nZVI existed on E. coli surface and in the cytoplasm. S/nZVI might have interacted with the amine, carboxyl, and ester groups on E. coli cell surface, as demonstrated by Fourier Transform Infrared Spectroscopy analysis. However, the presence of individual groundwater component (e.g., Ca 2+ , SO 4 2− , HCO 3 − and humic acid) could more or less alleviate the toxicity of S/nZVI. Furthermore, S/nZVI only exhibited slight toxic effect (
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    34
    Citations
    NaN
    KQI
    []