Ruthenium Dye Excitations and Relaxations in Natural Sunlight.

2021 
Solar harvesting devices using dyes convert the sun's energy to usable forms. The photophysics involved are generally investigated using time-resolved spectroscopic experiments with femtosecond to nanosecond resolution. We show that a kinetic framework constructed from transient and linear absorption measurements of metal-ligand charge transfer states for a set of ruthenium complexes in solution can be used to simulate the steady-state dynamics of dyes adsorbed on a substrate under diffuse solar radiation. Even though the intensity of sunlight is relatively low, double excitations to higher excited states can occur. The steady-state populations show that the dyes' triplet state is the main species present besides the ground state. While small, these persistent excited populations can influence reactivity over the extended periods of time that the systems operate. The results show that non-radiative and optical events (dye-1 s-1) within the singlet manifold and from the triplet state exhibit a dependence on ligand substituents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    0
    Citations
    NaN
    KQI
    []