Nonlinear Modeling of Neural Interaction for Spike Prediction Using the Staged Point-Process Model

2018 
Neurons communicate nonlinearly through spike activities. Generalized linear models (GLMs) describe spike activities with a cascade of a linear combination across inputs, a static nonlinear function, and an inhomogeneous Bernoulli or Poisson process, or Cox process if a self-history term is considered. This structure considers the output nonlinearity in spike generation but excludes the nonlinear interaction among input neurons. Recent studies extend GLMs by modeling the interaction among input neurons with a quadratic function, which considers the interaction between every pair of input spikes. However, quadratic effects may not fully capture the nonlinear nature of input interaction. We therefore propose a staged point-process model to describe the nonlinear interaction among inputs using a few hidden units, which follows the idea of artificial neural networks. The output firing probability conditioned on inputs is formed as a cascade of two linear-nonlinear (a linear combination plus a static nonlinear...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    68
    References
    9
    Citations
    NaN
    KQI
    []