Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode

2008 
Abstract In this paper the direct electron transfer of hemoglobin (Hb) was carefully investigated by using a room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF 6 ) modified carbon paste electrode (CILE) as the basal working electrode. Hb was immobilized on the surface of CILE with the nanocomposite film composed of Nafion and CdS nanorods by a step-by-step method. UV–vis and FT-IR spectra showed that Hb in the composite film remained its native structure. The direct electrochemical behaviors of Hb in the composite film were further studied in a pH 7.0 phosphate buffer solution (PBS). A pair of well-defined and quasi-reversible cyclic voltammetric peaks of Hb was obtained with the formal potential ( E 0 ′) at −0.295 V (vs. SCE), which was the characteristic of heme Fe(III)/Fe(II) redox couples. The direct electrochemistry of Hb was achieved on the modified electrode and the apparent heterogeneous electron transfer rate constant ( k s ) was calculated to be 0.291 s −1 . The formal potentials of Hb Fe(III)/Fe(II) couple shifted negatively with the increase of buffer pH and a slope value of −45.1 mV/pH was got, which indicated that one electron transfer accompanied with one proton transportation. The fabricated Hb sensor showed good electrocatalytic manner to the reduction of trichloroacetic acid (TCA).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    60
    Citations
    NaN
    KQI
    []